abs_energy(signal)

Computes the absolute energy of the signal.

auc(signal, fs)

Computes the area under the curve of the signal computed with trapezoid rule.

autocorr(signal)

Calculates the first 1/e crossing of the autocorrelation function (ACF).

average_power(signal, fs)

Computes the average power of the signal.

calc_centroid(signal, fs)

Computes the centroid along the time axis.

calc_max(signal)

Computes the maximum value of the signal.

calc_mean(signal)

Computes mean value of the signal.

calc_median(signal)

Computes median of the signal.

calc_min(signal)

Computes the minimum value of the signal.

calc_std(signal)

Computes standard deviation (std) of the signal.

calc_var(signal)

Computes variance of the signal.

dfa(signal)

Computes the Detrended Fluctuation Analysis (DFA) of the signal.

distance(signal)

Computes signal traveled distance.

ecdf(signal[, d])

Computes the values of ECDF (empirical cumulative distribution function) along the time axis.

ecdf_percentile(signal[, percentile])

Computes the percentile value of the ECDF.

ecdf_percentile_count(signal[, percentile])

Computes the cumulative sum of samples that are less than the percentile.

ecdf_slope(signal[, p_init, p_end])

Computes the slope of the ECDF between two percentiles.

entropy(signal[, prob])

Computes the entropy of the signal using the Shannon Entropy.

fundamental_frequency(signal, fs)

Computes fundamental frequency of the signal.

higuchi_fractal_dimension(signal)

Computes the fractal dimension of a signal using Higuchi's method (HFD).

hist_mode(signal[, nbins])

Compute the mode of a histogram using a given number of (linearly spaced) bins.

human_range_energy(signal, fs)

Computes the human range energy ratio.

hurst_exponent(signal)

Computes the Hurst exponent of the signal through the Rescaled range (R/S) analysis.

interq_range(signal)

Computes interquartile range of the signal.

kurtosis(signal)

Computes kurtosis of the signal.

lempel_ziv(signal[, threshold])

Computes the Lempel-Ziv's (LZ) complexity index, normalized by the signal's length.

lpcc(signal[, n_coeff])

Computes the linear prediction cepstral coefficients.

max_frequency(signal, fs)

Computes maximum frequency of the signal.

max_power_spectrum(signal, fs)

Computes maximum power spectrum density of the signal.

maximum_fractal_length(signal)

Computes the Maximum Fractal Length (MFL) of the signal, which is the average length at the smallest scale, measured from the logarithmic plot determining FD.

mean_abs_deviation(signal)

Computes mean absolute deviation of the signal.

mean_abs_diff(signal)

Computes mean absolute differences of the signal.

mean_diff(signal)

Computes mean of differences of the signal.

median_abs_deviation(signal)

Computes median absolute deviation of the signal.

median_abs_diff(signal)

Computes median absolute differences of the signal.

median_diff(signal)

Computes median of differences of the signal.

median_frequency(signal, fs)

Computes median frequency of the signal.

mfcc(signal, fs[, pre_emphasis, nfft, ...])

Computes the MEL cepstral coefficients.

mse(signal[, m, maxscale, tolerance])

Computes the Multiscale entropy (MSE) of the signal, that performs the entropy analysis over multiple time scales.

negative_turning(signal)

Computes number of negative turning points of the signal.

neighbourhood_peaks(signal[, n])

Computes the number of peaks from a defined neighbourhood of the signal.

petrosian_fractal_dimension(signal)

Computes the Petrosian Fractal Dimension of a signal.

pk_pk_distance(signal)

Computes the peak to peak distance.

positive_turning(signal)

Computes number of positive turning points of the signal.

power_bandwidth(signal, fs)

Computes power spectrum density bandwidth of the signal.

rms(signal)

Computes root mean square of the signal.

skewness(signal)

Computes skewness of the signal.

slope(signal)

Computes the slope of the signal.

spectral_centroid(signal, fs)

Barycenter of the spectrum.

spectral_decrease(signal, fs)

Represents the amount of decreasing of the spectra amplitude.

spectral_distance(signal, fs)

Computes the signal spectral distance.

spectral_entropy(signal, fs)

Computes the spectral entropy of the signal based on Fourier transform.

spectral_kurtosis(signal, fs)

Measures the flatness of a distribution around its mean value.

spectral_positive_turning(signal, fs)

Computes number of positive turning points of the fft magnitude signal.

spectral_roll_off(signal, fs)

Computes the spectral roll-off of the signal.

spectral_roll_on(signal, fs)

Computes the spectral roll-on of the signal.

spectral_skewness(signal, fs)

Measures the asymmetry of a distribution around its mean value.

spectral_slope(signal, fs)

Computes the spectral slope.

spectral_spread(signal, fs)

Measures the spread of the spectrum around its mean value.

spectral_variation(signal, fs)

Computes the amount of variation of the spectrum along time.

spectrogram_mean_coeff(signal, fs[, bins])

Calculates the average power spectral density (PSD) for each frequency throughout the entire signal duration provided by the spectrogram.

sum_abs_diff(signal)

Computes sum of absolute differences of the signal.

wavelet_abs_mean(signal, fs[, wavelet, ...])

Computes CWT absolute mean value of each wavelet scale.

wavelet_energy(signal, fs[, wavelet, max_width])

Computes CWT energy of each wavelet scale.

wavelet_entropy(signal, fs[, wavelet, max_width])

Computes CWT entropy of the signal.

wavelet_std(signal, fs[, wavelet, max_width])

Computes CWT std value of each wavelet scale.

wavelet_var(signal, fs[, wavelet, max_width])

Computes CWT variance value of each wavelet scale.

zero_cross(signal)

Computes Zero-crossing rate of the signal.